In Reply Refer To: 112D ### October 10, 2000 ### UNDER SECRETARY FOR HEALTH'S INFORMATION LETTER ### **DENTAL UNIT WATERLINES** - 1. The Office of Dentistry (112D), Office of Occupational Health (136), Office of Infectious Diseases (111A), and the Office of Occupational Safety and Health (00S1) have jointly developed this Information Letter in conjunction with the Chief Network Office (10N) to address concerns over potential bacterial hazards associated with biofilm in dental unit waterlines. Several cases of infectious disease have been attributed to dental unit water exposure among patients and workers (see Att. C, subparas. 1a and 1i). Nevertheless, systematic attempts to identify such disease following standard public health approaches have failed to confirm this hazard (see Att. C, subpara. 1m). Markers of exposure suggest that dental personnel are exposed to potentially infectious agents in the work place (see Att. C, subparas. 1d, 1f, and 1o). While dental treatment water may pose a public health threat, traditional approaches to public health hazard assessment do not support that this is a common problem. Nevertheless, water containing high numbers of microorganisms poses a theoretical risk to dental staff members and to patients who are medically or immuno-compromised, or have underlying lung disease (see Att. C, subpara. 1q). Recently, media stories have alerted the public to this issue. In 1995, the American Dental Association (ADA) Board of Trustees highlighted this issue by publishing recommended actions. - 2. Attachment A outlines the scientific background information on bacterial colonization of dental unit waterlines; Attachment B suggests a possible set of actions that field sites might consider regarding concerns over potential bacterial hazards associated with biofilm in dental unit waterlines; Attachment C contains a list of pertinent publications and Internet resources, and Attachment D contains reference information concerning protocols, exposure, issues and significant findings. - 3. Clinical questions may be referred to C. Richard Buchanan, DMD, FICD, at (202) 273-8503. Questions about surveillance, linkage strategies, or further scientific work, may be referred to either Gary Roselle, M.D., Chief Consultant in Infectious Disease, at (513) 475-6398; or Michael Hodgson, M.D., MPH, Director, Occupational Health Program, at (202) 273-8579. Questions regarding general safety and health issues may be referred to Arnold B. Bierenbaum, Director, Safety and Technical Services in the Veterans Health Administration (202) 273-5841 or Frank Denny, Industrial Hygienist, Office of Occupational Safety and Health (202) 273-9745. Thomas L. Garthwaite, M.D. Under Secretary for Health Attachments DISTRIBUTION: CO: E-mailed 10/12/2000 FLD: VISN, MA, DO, OC, OCRO, and 200 - FAX 10/12/2000 EX: Boxes 104, 88, 63, 60, 54, 52, 47 and 44 - FAX 10/12/2000 #### **ATTACHMENT A** ### SCIENTIFIC BACKGROUND - 1. Microorganisms found in dental units largely represent common, water-borne organisms. Bacteria and some protozoa and fungi that habitually reside in the human oropharynx, skin, and lower intestine have also been isolated from dental waterline samples (see Att. C, subpara. 1q). Water stagnation and a low flow rate near tubing walls fosters the development of biofilm causing large numbers of bacteria to be found in water flowing through dental handpieces, air/water syringes and other devices used in patient care. There have been reports of as many as 100,000 colony-forming units per milliliter (CFU / ml) of water in newly-installed dental lines within five days of operation and an excess of 1,000,000 CFU / ml of water in older lines. Common contaminants include species of Pseudomonas, Legionella, non-tuberculous Mycobacterium, Klebsiella, Moraxella, Flavobacterium, and Escherichia. In addition, oral flora such as Lactobacillus, Streptococcus, Actinomyces, Staphylococcus, Bacterioides, Veillonella and Candida have been recovered from dental treatment water. - 2. The American Dental Association (ADA)-recommended goal of less than 200 CFU / ml at any point in time represents an engineering limit. It is directed to manufacturers of dental units to encourage the development of equipment that is less conducive to biofilm formation. It is not aimed at practicing dentists and is not meant as a ceiling level for practitioners. - 3. Measurement of bacterial levels in waterlines can be misleading in the absence of a formal plan for sample collection and interpretation. Measuring bacteria levels in the waterlines without applying a disinfection protocol is likely to confirm the presence of "high" numbers of bacteria. The Environmental Protection Agency's (EPA) standard for safe drinking water of no more than 500 CFU / ml of aerobic, mesophilic, and heterotrophic bacteria is a poor measure of associated health risk (see Att. C, subparas. 1b and 1c). For this reason, the measurement of bacteria levels in the waterlines to indicate water quality is not useful. Because microorganisms multiply rapidly in water, reliance on quantitative sampling may be misleading unless sampling occurs very frequently. Sampling may be useful, however, when conducted as a periodic, planned check on adherence to a regimen of disinfection procedures as indicated by the manufacturer of the equipment in use. - 4. An alternative approach to control focuses on defining appropriate maintenance strategies rather than on meeting "criteria levels." This approach has been taken by a number of professional organizations and defines the expected standard of practice. - a. The Department of Defense United States Air Force (USAF) has published guidelines, "Year 2000 USAF Dental Infection Control Guidelines." Methods suggested by the USAF, and by the American Dental Association (ADA), are able to reduce biofilm levels. Summaries of those methods are attached. - b. The 1993 Recommendations for Infection Control in Dentistry, from the Centers for Disease Control and Prevention (CDC), and incorporated by the ADA, as well as by the Organization for Safety and Asepsis Procedures (OSAP), proposed the use of sterile irrigating solutions for all dental procedures involving the cutting of bone. These recommendations represent a clearly-defined, expected level of practice. These procedures also include the following guidelines: installing and maintaining manufacturer approved anti-retraction valves; flushing the lines and handpieces for a minimum of 20 to 30 seconds between patients; and allowing waterlines to run for several minutes at the beginning of each clinic day with the handpieces removed. Sterilized handpieces and sterile or disposable syringe tips should be installed after each flushing. *NOTE: These procedures are intended to aid in physically flushing out patient material that may have entered the turbine and air or waterlines.* - 5. Currently, the California (CA) State Dental Board regulates infection control practices. The requirements include daily flushing of the lines before seeing patients, flushing between patients, developing a written protocol, and posting a copy of the regulation in a conspicuous location (see CA Board of Dental Examiners, 1994). - 6. The Occupational Safety and Health Administration (OSHA) inspection procedures require Food and Drug Administration (FDA)-approved point-of-use filters of 0.2 micron pore size in the event of complaints or illness related to legionella potentially associated with dental unit waterlines (see Att. C, subpara. 11). - 7. Despite the lack of clear scientific evidence for a need to act, justification for addressing the phenomenon of biofilm and dental water quality can be found in current best practices in dentistry, infection control, and the informed consent of patients. Reasonable procedures should be followed to keep bacterial counts in dental waterlines as low as reasonably achievable (see Att. C, subparas. 1m, 1n, and 1q). - 8. In the event that illness may be traceable to dental treatment, the local infection control practitioner, infectious disease consultant, or employee health physician should be contacted with relevant information to develop a formal investigation. #### ATTACHMENT B ### SUGGESTED SET OF ACTIONS 1. According to the American Dental Association (ADA), the Food and Drug Administration (FDA) has cleared over twenty-six products that improve the quality of water used in dental units, these can be found in a table at http://www.ada.org/adapco/jada/archives/9911/waterlines/table.html. These products fall into one or a combination of the following four basic categories: - a. Independent water systems that bypass the community water supply; - b. Chemical treatment protocols (intermittent or continuous); - c. Point-of-use filters; and - d. Sterile water delivery systems. *NOTE:* Items a, b, and c are useful for lowering the biofilm level; however, they do not create the sterile water necessary for surgical procedures. **NOTE:** The pros and cons of these systems are discussed in detail in the <u>Journal of the American Dental Association</u> (<u>JADA</u>) article, "ADA Council on Scientific Affairs and ADA Council on Dental Practice. Dental Unit Waterlines: Approaching the Year 2000." <u>JADA</u>, November 1999; 130: 1653-64. - 2. When selecting a system for reducing bacterial contamination, include the following considerations: - a. Efficacy of the system; - b. Staff time involved in utilizing and maintaining the system; - c. Staff compliance with system requirements; and - d. Cost. - 3. In light of the ongoing research on this issue, it is suggested that facility Dental Services contact manufacturers of their dental units for recommendations on systems that will reduce bacterial contamination without damaging the dental units. Remaining informed of current literature is also highly recommended. **NOTE:** Quality assurance is an important aspect of any infection control process. 4. Findings
of Jorgensen, Detsch and others (see Att. C, subparas. 1g, 1h, and 1j) indicate that dental units operating on municipal water systems should be considered contaminated until measures to control biofilm are incorporated. In addition, closed water systems do not control contamination unless a disinfection protocol is followed (see Att. C, subpara. 1p). A variety of sampling methods for monitoring are available to evaluate the effectiveness of the control program. Use of bacterial samplers, such as the Millipore 'dip stick' for assessing water quality, has been identified as an acceptable alternative to bacterial cultures -- as culturing may not be practical for use in the dental service (see Att. C, subparas. 1g and 1h). The Department of Veterans Affairs (VA) has a contract price with Millipore at \$43.00 for a pack of 25 samplers; the number is GSAPROP15. 5. Services may consult their microbiology section for guidance in determining bacterial levels in the waterlines. Veterans Health Administration has an Interagency Agreement, IGA V654(90)P-97003, with the U.S. Public Health Service (PHS), Federal Occupational Health, for performing sample analysis and consultation. The Reno Veterans Integrated Service Network (VISN) Support Service Center (VSSC) coordinates the ordering and payment of PHS services. VSSC implements the PHS Interagency Agreement with VISNs paying the cost for their facilities using the PHS services. The PHS agreement offers the advantage of not requiring complicated procurement procedures to access. Marilyn Waggoner, VSSC coordinator in Temple, TX, for the PHS agreement, can be contacted at (254) 778-4811, extension 4244. The PHS contact is Michelle Stemmons, Federal Occupational Health, Chicago, IL, at (312) 886-0413, extension 11. #### ATTACHMENT C ### **REFERENCES** ### 1. Publications - a. Atlas, R., Jeffrey, F., and Huntington, M. Legionella Contamination of Dental Unit Waters. <u>Applied and Environmental Microbiology</u>, 61, (4), 1995:1208 1213. - b. Barbeau, J., Nadeau, C. "Dental Unit Waterline Microbiology: A Cautionary Tale." <u>Canadian Dental Association</u>, 1997:775 – 779. - c. Batik, O., Craun, G., Pipes, W. (1983). Routine Coliform Monitoring and Waterborne Disease Outbreaks. Journal of Environmental Health, 45, 227 230. - d. Clark, A. (1974). Bacterial Colonization of Dental Units and the Nasal Flora of Dental Personnel. <u>Proceedings of the Royal Society of Medicine</u>, 67, 1269 1270. - e. Infection Control Regulations: 1005. <u>Minimum Standards for Infection Control</u>. California Board of Dental Examiners. 1994. - f. Fotos, P., Westfall, I., Snyder, R., Miller, R., Mutchler, B. "Prevalence of Legionella-specific IgG and IgM Antibody in a Dental Clinic Population." <u>Journal of Dental Research</u>, 64, (12), 1985:1382 1385. - g. Jorgensen, M., Detsch, S., Wolinsky, L. "Disinfection and Monitoring of Dental Unit Waterlines." General Dentistry, 1999:152 156. - h. Karpay, R., Plamondon, T., Mills, S., Dove, B. "Combining Periodic and Continuous Sodium Hypochlorite Treatment." <u>Journal of the American Dental Association</u>, 1999: 957 965. - i. Martin, M. (1987). The Significance of the Bacterial Contamination of Dental Unit Water Systems. British Dental Journal. 1987: 163, 152 154. - j. Micik, R., Miller, R., Mazzarella, M., Ryge, G. "Studies on Dental Aerobiology: I. Bacterial Aerosols Generated During Dental Procedures." <u>Journal of Dental Research</u>, 1968: 48, (1), 49 56. - j. Mills, S. (1998). "The Waterline Controversy: Politics or Principles?" <u>OSAP Report</u>, 11, (1), 6. - k. Muraca, P, Stout, J., Yu, V., Yee, Y. "Legionnaires' Disease in the Work Environment: Implications for Environmental Health." <u>American Industrial Hygiene Journal</u>, 49, 1998: 584 590. - 1. Occupational Safety and Health Administration (OSHA) Technical Manual, TED 1 0.15A, 1999, U.S. Department of Labor. - m. Oppenheim, B., Sefton, A., Gill, O., Tyler, J., O'Mahony, M., Richards, J., Dennis, P., Harrison, T. (1987). "Widespread Legionella pneumophila Contamination of Dental Stations in a Dental School Without Apparent Human Infection." <u>Epidemiology of Infection</u>, 99, 159 166. - n. Pankhurst, C., Johnson, N., Woods, R. "Microbial contamination of Dental Unit Waterlines: The Scientific Argument." <u>International Dental Journal</u>, 1998: 48, 359 368. - o. Reinthaler, F., Mascher, F., Stunzer, D. "Serological Examinations for Antibodies Against Legionella Species in Dental Personnel." Journal of Dental Research, 1998: 67,(6), 942 943. - p. Williams, H., Kelley, J., Folineo, D., Williams, G., Hawley, C., Sibiski, J. "Assessing Microbial Contamination in Clean Water Dental Units and Compliance with Disinfection Protocol." Journal of the American Dental Association, 125, 1994:1205 1211. - q. Williams, J., Molinari, J., Andrews, N. "Microbial Contamination of Dental Unit Waterlines: Origins and Characteristics." Compendium. 17, (6), 1996: 538 558. ### 2. Internet Resources - a. American Dental Association, Statement on Dental Unit Waterlines, 1995: http://www.ada.org/prac/position/lines.html - b. Centers for Disease Control and Prevention. Recommended Infection-Control Practices for Dentistry, 1993, MMWR42 (RR-8) http://www.cdc.gov/epo/mmwr/preview/mmwrhtml/00021095.htm - c. Center for Biofilm Engineering, Montana State University, Interdisciplinary Glossary, 1999, http://www.erc.montana.edu/Res-Lib99-SW/glossary/Gterms.html - d. Environmental Protection Agency, National Primary Drinking Water Regulations, 1999, http://www.epa.gov/OGWDW/wot/appa.html - e. Occupational Safety and Health Administration. OSHA Technical Manual, TED 1-0.15A, 1999. http://www.osha-slc.gov/dts/osta/otm/otm_toc.html - f. Organization for Safety & Asepsis Procedures. Issue focus: Dental Unit Waterlines, 1999, http://www.osap.org/water/index.html - g. The Journal of the American Dental Association (JADA) article titled, "Dental Unit Waterlines: Approaching the Year 2000" by the ADA Council on Scientific Affairs, JADA, Vol.130, November 1999, p.p. 1653-1664, http://www.ada.org/adapco/jada/archives/9911/waterlines/water.html includes table referenced in the Letter. - h. USAF Dental Investigation Service (DIS) "Dental Waterline Treatment Protocol," http://www.brooks.af.mil/dis/ ## ATTACHMENT D # **Protocols** | | Karpay et
al. 1999 | Year 2000 USAF Dental IC
Guidelines
Dental Water Quality
Chapter 10 | Jorgensen & Detsch
1998 | | Unpublished Data:
Dr. Janet Stout
(focus: Legionella
control not biofilm) | OSHA
Technical
Manual 1999 | CDC
IC Practices
for Dentistry
1993 | New
Products | |--|-------------------------------------|--|---|--------|--|----------------------------------|--|-----------------| | Separate
Water System | х | Х | Х | | | | | | | Double Bottle | Unspecified | Unspecified | Recommend | | | | | | | Single Bottle | | | | | | | | | | Air bypass | х | х | X | | | | | | | Disposable plastic syringe | | | | | | | | | | Water Source | | | | | | | | | | Municipal | 1 gtt Cl in
750 ml (3
ppm Cl) | | Never use tap water, re: too
dissolved solids and
development of resistant st
(*Discussion, T Caruthers, St
Detsch 4/20/00) | rains. | Х | | | | | Lab conditions-
soften,
rechlorinate | Х | | , | | | | | | | Sterile water | | X or | *5 ppm Cl (3 gtt / L) | | X or | | Surgical | | | Sterile saline | | | | | | | Surgical | | | Distilled | | X or | *5 ppm Cl (3 gtt / L) | | X or | | | | | Boiled | | X or | | | | | | | IL 10-2000-011 October 10, 2000 | | Karpay et
al. 1999 | Year 2000 USAF Dental IC
Guidelines
Dental Water Quality
Chapter 10 | Jorgensen & Detsch
1998 | Unpublished Data:
Dr. Janet Stout
(focus: Legionella
control not biofilm) | OSHA
Technical
Manual 1999 | CDC
IC Practices
for Dentistry
1993 | New Products | |-----------------------------|---|--|----------------------------|--|--|--|--------------| | Chemical
Agents | х | х | х | х | | | | | Bleach | 1:10 daily
for 5 days
then weekly | 1:10 wkly | 1 :10 wkly till no growth | 1 :10 wkly
(Monday a.m.) | | | | | Glutaraldehyde | | | | | | | | | lodophor | | | | | | | | | Chlorhexidine | | | *Personal discussion | | | | | | Microfiltration | | Optional Point of use (no effect on biofilm) | | Point-of-use filter at heating unit | Point- of-use,
0.22 micron
pore size | | | | Water Heating
Units | no | no | no | Bypass tubing for
bleach treatment | | | | | Air Purge, Dry
Overnight | х | х | х | | | | | | Flush Lines | x | х | x | | | Х | | | Morning | х | 2-3 minutes | | | | several min.
& remove
handpieces | | | Between
Patients | Standard
Practice | 20-30 seconds | | | | 20-30 sec -
thru
handpieces | | | End of day | Х | 3 minutes | Х | | | | - | | Disinfect oral cavity | X | | *Personal discussion | | | | | | | Karpay et
al. 1999 | Year 2000 USAF Dental IC
Guidelines
Dental Water Quality
Chapter 10 | Jorgensen & Detsch
1998 | Unpublished Data:
Dr. Janet Stout
(focus: Legionella
control not biofilm) | OSHA
Technical
Manual 1999 | CDC
IC Practices
for Dentistry
1993 | New Products | |--------------------------|-----------------------
--|-----------------------------|--|----------------------------------|--|--------------| | Antiretraction
Valves | | Proper Maintenance | | | | Proper
Maintenance | | | Monitoring | | Periodic | Daily till neg. then weekly | Twice weekly -
Tues & Friday | | | | | SBA | | | | | | | | | R2A | | | | | | | | | Millipre Dip
Sticks | q Fri | | Suggest | | | | | | Contact
Manufacturer | х | х | х | х | FDA Cleared | х | | | Handpieces | Air Purge | "Universal Sterilization" | | | | Sterilize | | ## **Exposure** | Reference | YR | Title | Study Type | Purpose | Health Effects
of Concern | Significant
Findings | Significant
Findings | | | |--|-------|--|--|---|--|--|--|--|--| | Le | gione | lla | | | | | | | | | Atlas, Williams,
et al., Appl &
Env. Microbiol,
1995, 61, 1208-13 | 1995 | Legionella
Contamination of
Dental-Unit
Waters | Legionella
Prevalence:
Comparison of
local water/ DUW
/ biofilm | Source of
Legionella
Exposure in
Dental units | Ref: death of
dentist - Leg.
traced to office
DUWL; reports
of sero-positive
dental workers | Legionella
concentratio
n is higher in
DUWL than
domestic
potable
water | Legionella
source: DUWL
(not hand tools) | Higher
Legionella
levels may
be result
of PCR
detection
methods
vs. viable-
culture
methods | | | | | | | | | Lack of
clinical
association
with DUWL
as source of
Legionella | Dental exposure - unrecognized element of medical Hx. of certain cases | | | | Oppenheim,
Sefton, et al.,
Epidem Inf, 1987,
99, 159-66. | 1987 | Widespread Legionella pneumophila contamination of dental stations in a dental school without apparent human infection | Case finding,
environmental
survey, Case-
control study,
review of national
surveillance data | Discover human infection; extent & source of L. pneumophila after 3 of 5 dental water samples were positive, reports of debris in DUWL, & increased resp. ill in staff & students | exposure to
legionella-
contaminated
aerosols. | No cases
traced to
dental clinic,
no difference
in sero-
positivity of
controls vs.
staff &
students | | | | | Reference | YR | Title | Study Type | Purpose | Health Effects of Concern | Significant
Findings | Significant
Findings | | | |--|------|--|--|--|--|---|---|-----------------------------------|--| | Reinthaler,
Mascher, et al. J.
Dent Res 1988, 67,
942-943 | 1988 | Serological Examinations for Antibodies against Legionella Species in Dental Personnel | Case-control for
antibodies to L.
pneumophila from
dental workers | Identify Legionella infection risk factors & modes of transmission | | Sero-
positivity to
Legionella | Sero-positive:
36(34%) dental
workers, five
(5%) controls | Positive –
1.5 yrs-
minimum | Highest
prevalence
in Dentists
with
constant
exposure to
high-speed
drill & spray
aerosols | | Fotos, Westfall, et al., J Dent Res, 1985, 64, 1382-85 | | Prevalence of
Legionella-
Specific IgG &
IgM Antibody in a
Dental Clinic
Population | Case-control
study - serum
samples of 270
dental personnel
compared to
random sample of
non-clinic group | To understand importance of Legionella infection in the dental clinic | Legionella
pneumonia after
exposure to
legionella-
contaminated
aerosols. | Responders
had greater
than 2 years
clinical
exposure
time | IgM & IgA
markers should
be considered | | | | | | DDES OF TRANSM | | | | | | | | | Blatt, Parkinson, et al. Am J Med, 1993, 95, 16-22 | 1993 | Nosocomial
Legionnaires'
Disease:
Aspiration as a
Primary Mode of
Acquisition | Case-control and environmental exposure | Identify Legionnella infection risk factors & modes of transmission during an outbreak of nosocomial Legionnaires' Disease | Aspiration acquired nosocomial pneumonia post oropharynx colonization | Water supply
pipe
renovations
taking place | Significant Medical History: immunosuppre ssive therapy; Significant Hospital Exposure: *bedbaths, NG tubes, antibiotic therapy *(not - using shower) | | | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | Study type | Purpose | Health Effects of Concern | Significant
Findings | Significant
Findings | | |---|------|---|---|---|--|---|--|--| | Brabenderr,
Hinthorn, Asher, et
al.,JAMA, 1983,
250, 3091-92 | 1983 | Legionella
pneumophila
Wound Infection | Case Study:
Wound infection
traced to Hubbard
tank treatments in
hospital | Investigate extrapulmonary cases of L pneumophila infection | Infection or colonization of wounds with L pneumophila | Implications
for treatment
of decubitus
ulcers,
burns, other
open wounds | Providone Iodine disinfection of tank ineffective Hyperchlorinati on & superheating of warm water supplies suggested | | | Muder, Yu, Woo,
Arch Intern Med,
1986, 146, 1607-
1612 | 1986 | Mode of
Transmission of
Legionella
pneumophila: A
Critical Review | Theory Overview: L. pneumophila modes of transmission | Directions for
future
epidemiological
research | Aerosolization:
(1968) Pontiac
fever -
hypersensitivity
reaction to
organism (1976)
Legionnaires'
pneumonia | Natural variation of disease over time. Outbreaks terminate spontaneousl y without intervention: leads to lapses in surveillance; biased interpretation of mode of transmission | | | | Reference | YR | Title | Study Type | Purpose | Health
Effects of
Concern | Significant
Findings | Significant
Findings | | | |--|----------|---|--|--|--|-------------------------|--|--|--| | Non-tul | berculos | is mycobacterium | (NTM) | | | | | | | | Schulze-
Robbecke,
Feldmann,Tubercl
e & Lung Dis,
1995, 76, 318-23 | 1995 | Dental units: an environmental study of sources of potentially pathogenic mycobacterium | NTM Prevalence:
Comparison of
local water / DUW
/ biofilm | NTM
Transmission:
Identify situations
of relevant
contact with NTM | Pulmonary &
Cutaneous
disease
Lymphadenitis,
Disseminated
infection | 400 X drinking | Concern that determinants of infection are present: large quantities of infectious agent, portal of entry; third element: susceptible host | Ref: NTM disease-with assoc. dental tx: post prosthetic heart valve infection; post dental extraction-2 cases cervical lymphadenitis | | | | | | | | Research
needed to
determine
association with
dental tx &
infection /
colonization
with NTM | | |
Ref: NTM aerosolize - 95% oral bacteria from mouth by water sprays and air turbines - droplet size <5Um | | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | St | tudy Type | Purpose | Health
Effects of
Concern | Significant
Findings | Significant
Findings | | | |---|----------|---|--|--|--|--|---|--|--|---| | Adherent | Bacteria | a in DUWL | | | | | | | | | | Downey, Rosen, J
Dent Res., (IADR
Abstra+A2cts
#3177) 1996, 75,
415 | | Adhere
Bacter
DUWL | ial in ide | entify bacteria
sing types of
ental tubing. | Findings: Bacillus licheniformis, Staphylococcus aureus, Pseudomonas sp. | Conclusion: "Certain adherent bacteria in DUWLs are pathogenic (e.g. Staphylococcus aureus)" | | | | | | Investigations | | • | • | | | | | | | | | Cuthbertson, J of
CA St Dental Assn,
1954, 30, 159-160 | | Dentis
Compa
with th | Among cats: A amarison / g po al Male 65 | nuses of death
mong dentists
general male
opulation 25- | Examine excess
mortality among
dentists | | No
association
made | Both groups:
#1#2 COD 1.
Circulatory
2. Neoplasms | | | | Clark, 1974, Proc.
R. Soc. Med, 67,
1269-30 | | Bacter
Coloni
of DUs
Nasal
of Den
Persor | zation an s & the na flora de tal as | nd anterior
ares of | Examine
colonization of
nasal flora by
DU aerosols | | 14 out of 30
dentists had
altered nasal
flora; 3 of 29
assistants | Pseudomonas spp, Proteus | Suggest:
microfiltra-
tion,
disinfectant
reservoir | "impossible to
justify spraying
large numbers
of bacteria into
an operative
field" | ## **Due Diligence** | Reference | Yr | | Title | Study Type | Purpose | Concerns | Significant
Findings | Significant Findings | | |--|------|--|---------------------|------------------------|---|---|--|--|---| | Year 2000 USAF
Dental Infection
Control Guidelines | | http://www.brooks.af.mi
delines/attach4.htm | /dis/icgui | See Protocol section | | | | | | | Organization for
Safety & Asepsis
Procedures (OSAP)
March, 2000 | | Position
Dental U
Waterlin | lnit [*] | | Statement of the
Responsibilities of
Clinicians | Lack of
epidemiological
evidence of illness /
injury in pts / staff is
NOT valid rational
for inaction | RECOMMENDATIONS 1. Review literature, underisks. 2. Follow manufacturer refor maintaining quality tre 3. When replacing dental select products that main 4. Obtain manufacturer's efficacy, and cost effect of | ecommendations
atment water
I units & devices,
tain water quality.
info on safety, | RECOMMEND
Bacterial
counts as
low as
reasonably
achievable | | OSHA Technical
Manual, TED 1-0.15A,
1999 | 1997 | OSHA
http://www.osha-
slc.gov/dts/osta/otm/o | Гесh
tm_iii/otı | Manual
m_iii_7.html | OSHA Inspection
Procedures: Point-
of-use filter 0.22
micron pore size | | | | | | ADA Statement on
DUWL, 1995 | 1995 | ADA http://www.ada.o | rg/prac/p | osition/lines.html | Propose research
into feasible
methods to reduce
bacteria in DUWL | Recommended
Goal: <200 CFU/ml
aerobic mesophilic
heterotrophic
bacteria (ceiling
level) by year 2000 | Suggested Practices: *Independent reservoirs; *chemical disinfection; *daily draining & air purging; *point of use filters; *simple test methods | | | | Dental Board of
California, 1994 | 1994 | Reg. S
http://www.comda.ca. | ection
gov/infco | | Minimum standards
for Infection Control | Requirements:
Autoclave
handpieces; anti-
retraction valves;
Flush between
patients | Requirements: Purge
with air or water for 2
minutes at beginning of
each day | Requirements:
Written program | | | Reference | Yr | | Title | Study Type | Purpose | Concerns | Significant
Findings | Significant
Findings | | |--|------|--|--|---|--|---|--|---|--| | MMWR, 1993, 42 (No.
RR-8):1-12 Centers
for Disease Control &
Prevention (CDC) | | Recommendar
Dentistry
http://www.cd
ml/00021095.h | c.gov/epo/mmwr/pr | on Control in | | Recommendation
Sterile irrigating
solutions for all
surgical procedures
involving cutting of
bone. | (See Protocol Section) | | | | Table of FDA-Cleared Devices for DUWL | | http://www.osap | o.org/water/wl-fda.ht | m | | | | | | | McCarthy, Koval,
MacDonald AJIC,
1999, 27, 377-384 | 2000 | | Compliance with recommended infection control procedures among Canadian dentists: Results of a national survey | Mailed survey,
stratified
random sample
of 6537 dentists
(66.4%
response rate) | "Excellent
compliance"
routine use of 18
recommended IC
procedures (ADA,
CDC, CDA)
Finding:
6% compliance | Transmission of
BBP & drug
resistant
microorganisms | 50% use extra IC with
HIV, HBV patients:
vulnerable to
discrimination charges | Most important
predictor of
compliance:
attending IC
course in last 2
yrs. | | | | | | | Relevant
Results: | Flush waterlines: 55% | Heat-Sterilize
Handpieces: 94% -
after each patient
77% | | | | | Kono, Dentistry
Today, 1997, Aug, 32-
41 | 1999 | | DUWL, Taking the
High Road | Review
Summary | Outline key information | Prevent infection;
cross
contamination;
biofilm | | | | | Reference | Yr | | Title | Study Type | Purpose | Concerns | Significant
Findings | Significant Findings | | |---|------|---|----------------|------------|--|----------|---|--|--| | Barbeau, Gauthier,
Payment, Canadian
J. Microbiol, 1997,
63, 775-779 | 1997 | Biofilms,
infectious
agents, &
DUWL: a
review | Review Summary | | Aging, hi risk population, opportunistic infection | | Biofilm increases
biocide resistance 1000
times, selects, protects
potentially harmful
bacteria | Total bacteria
count - poor
indicator,
inadequate
measure of
health risk. | | ## Ancillary | Reference | Year | Title | Study
Type | Purpose | Health
Effects of
Concern | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |--|------|---|--|--|---|--|--|--|-------------------------| | Leenstra, Joris,
et al., Oral Surg.
Oral Med Oral
Path, 1996, 82,
637-43 | | Oral endotoxin
in healthy
adults | Case-
Control
Study | Establish a
baseline of
oral
endotoxin in
a healthy
group | Assess
mechanisms
of oral
carriage of
Aerobic
gram-
negative
bacilli
(AGNB) | Assess benefits of low endotoxicity of anaerobic gramnegative flora. | 1 mg of
anaerobic
endotoxin per
ml of
undiluted
saliva was
found | Endotoxin likely
generated
by
indigenous
anaerobic gram-
negative bacilli
carried in the
oropharynx. | | | High Speed Denta | • | | | | | | | | | | Martin,
Br. Den J, 1998,
184 (6) 278-9 | 1998 | The Air Water
Syringe (AWS):
A Potential
Source of
Microbial
Contamination | A guide
explaining
problems;
evaluating
extent; pt
outcomes;
solutions | | | Disposable
AWS tips are
preferable;
cover body of
syringe with
plastic; or
disinfect | Impossible to
clean, need
vacuum
autoclave | | | | Martin,
Br. Den J, 1994,
177 (2) 48 | 1994 | Cross Infection
Guidelines | Editorial
Comment | "Risks
should not
be negligible
but nil" | ref: cross
infection with
blood borne
viral disease | Cross-infection
control
mandates
sterilized
instruments &
barrier
techniques | | | | | Reference | Year | Title | Study Type | Purpose | Health
Effects of
Concern | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|------|---|--|--|--|---|---|--|---| | Epstein, Sibau
et al., JADA,
126, 87-92 | 1995 | Assessing
Viral
Retention and
Elimination in
Rotary Dental
Instruments | 5
handpieces
using lab
model
herpes
simplex
virus -
handpieces
run in HSV
culture
medium | Surface &
internal
disinfection
will inactivate
HSV | | Untreated
Handpieces -
viral recovery
from all | External wipe
with glut & alc:
viral recovery
from 3 out of 5
hand pieces. | No viral recovery with surface wipe & internal glutaraldehyde flush | Viral recovery
with surface
wipe & internal
saline flush | | Lewis, Boe, J
Clin Microbiol,
1992, 30, 401-
406 | 1954 | Cross-Infection Risks Associated with Current Procedures for Using High-speed Dental Handpieces | Dilution
rates of
material
from
handpieces | REF:
Handpiece
contamination
by patient
pathogen-
containing
materials/
viruses | Transmission
of blood
borne
pathogens, -
analagous to
percutaneous
needle
exposure | Absence of cross-infection cases in dentistry due to lack of adequate detection - not universal application of adequate infection control | Significant
cross-infection
potential
exists if only
external
disinfection is
applied | Recommend:
thorough
cleaning & heat
treating between
patients as
component of
universal
precautions | | | Scheid, Kim et
al., JADA, 1982,
105, 658-660 | 1983 | Reduction of
microbes in
hand pieces
by flushing
before use | Collection & culture of aerosol samples from dental hand pieces & tubing after several flushing protocols. | Identify the effect of flushing on reducing the microflora in aerosol mist | Ref: reports
of respiratory
illness twice
as great for
dental than
pharmacy &
med
students. | Flushing
DUWL before
attaching
handpiece -
then flushing
handpiece
with 100 ml
water reduces
bacterial
CFUs in
aerosols | | | | | Reference | Year | Title | Study Type | Purpose | Health
Effects of
Concern | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|-----------|---|---|---|--|--|---|-------------------------|-------------------------| | Prosthetic Joints | & Oral He | alth | | | | | | | | | Martin, Br Dent
J, 1995, 178 (3)
92 | 1995 | Oral Heatlh & implanted joint prostheses | editorial
comment | | Orally-
derived
infection of
implanted
prosthesis -
rare AND
preventable | Treat oral infection before joint replacements, & monitor oral health indefinitely. | | | | | Bartzokas,
Johnson et al.,
1994, BMJ, 309,
20-27 | 1994 | Relation
between
mouth &
haematogeno
us infection in
total joint
replacements | Analysis of
4 prosthetic
joint
infections
with case
records;
microbial
exam of
isolates
from mouth
&
prostheses;
mouth
examination
for caries, &
disease | Confirm oral
sepsis as a
source of BB
infection of
prosthetic
joints | | Each patient: same strain of S sanguis in mouth & infected prosthesis; severe caries / periodontal disease | Conclusion:
Treat oral
sepsis before
joint
replacement &
maintain oral
health | | | ## Interventions | Reference | YR | Title | Study
Type | Objectives | Issues | Significa
nt
Findings | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|----|---|---|--|--|---|---|---|---|---| | Karpay, Plamondon,
Mills, Dove, JADA,
1999, Jul, 130, 957-
965 | | Combining Periodic
& Continuous
Sodium
Hypochlorite
Treatment to
Control Biofilms in
Dental Unit Water
Systems | Prospective
Study of 10
DUs | *Evaluate
continuous (3ppm
CI) & intermittent
(5000-ppm CI)
DUWL treatment
*Assay
Trihalomethanes
(THM) in DU
water | EPA
Trihalomethane
(THM) drinking
water standard:
100 ppb | Weekly tx
with 1:10
NaCIO and
continuous 3
ppm CI in
water
maintains
fewer that
200 CFU/mI | | | | | | Jorgensen,
Detsch, General
Dentistry, 1999,
Apr, 152-156 | | Disinfection and monitoring of DUWL | Longitudinal
study 15 DU
evaluate
disinfection
protocol | Goal: User Friendly Protocol Methods: Baseline samples of tap water; 3- way syringes; handpiece hoses; ultrasonic scalar hoses 2 bottle system / air purge. Initial tx: 1. Air purge; 2. fill with 10% | Key points: *Sterile water in reservoirs for all dental procedures. Units remain airpurged when not in use. | Protocol: Collect random samples weekly. Air purge, fill with 1:10 bleach soln., 10 minute contact time; air purge; flush with 12 L sterile water; air purge. Continue this protocol: after 3 negative cultures (< 1 cfu/ml) Culture weekly No bleach | (+) culture: *bleach again, *check protocol of personnel. *Maintenance personnel check for corrosion | Abbreviations: >375 cfu = too numerous to count (TNC) Failure to show growth = <1cfu / ml | Scanning Electron Microscopy (SEM)-to visualize physical nature of biofilm before and after disinfection protocol. Evaluated: Presence/ absence of bacteria. Biofilm, bacterial density, biofilm volume | SEM- 12 tap water samples: 9 = 2.0 - 23.0 cfu/ml; 3 TNC Baseline cultures: all DUWL TNC | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | Study
Type | Objectives | Issues | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|------|---|-------------------|--
---|---|--|--|---|--| | | | | | Personal
discussion of T
Caruthers &
Steven Detsch
4/20/00 | 3 gtt NaOCI
per L sterile
water
prevents
development
of resistant
organisms;
need 5ppm to
have kill | Important to
have low total
dissolved
solids (TDS) | Purchase a TDS
meter and pool
test kit to check
chlorine | | | | | | | | | | | Results: 12 of
15 Dental
Units: Sharp
drop in
bacterial
contamination
after initial HCI
treatment in 3
wks - <1 cfu /
ml | Results: SEM of
WL tubing - very
little bacteria
Biofilm detected | Results: 12 units - Discontinue weekly bleach after 3 consec. neg. cultures. Excellent protocol compliance | Results: No
deleterious effects
on internal
components | Once disinfection achieved - use of sterile water in closed system, air-purging lines, maintaining lines - dry - when not in use - prevented increase in effluent bacteria counts. | | Barbeau, Gauthier,
Payment, Canadian
J. Microbiol, 1997, 63,
775-779 | 1997 | Biofilms,
infectious
agents, &
DUWL: a
review | Review
Summary | Outline imperative
of prevention;
need for solutions,
litigation claims of
illness from DUWL | Aging, hi risk
population,
opportunistic
infection | Pseudomonas
may be 90%
of cultivable
bacteria - 500
- 200 cfu/ml -
significant risk | Biofilm increases
biocide resistance
1000 times,
selects, protects
potentially harmful
bacteria | Total bacteria
count - poor
indicator of health
risk. Inadequate
measure of health
risk | | | | Clappison, Oral
Health, 1997, June,
11-15 | 1997 | Priority
One:
Decon-
tamination
of DUWL | Review
Summary | Outlines need to improve DUWL quality | Provider/
patient
protection | Biocides;
follow
protocol;
periodic
microbiologic
water testing | Disinfect DUWL
and upgrade
respiratory
protection | Closed systems,
functioning anti-
retraction valves | | | | Reference | YR | Title | Study
Type | Objectives | Issues | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|------|--|---|--|--|--|--|---|---|-------------------------| | Santiago,
Huntington,
Johnston et al.,
General Dent, 1994,
Nov/Dec, 528-535 | 1994 | Microbial
contamination of
DUWL: Short- &
long-term effects
of flushing | Comparison
of bacterial
contamination
levels at
various times
before / after
flushing and
static periods | Analyze DUWL flora; sample timing; procedural effects; flushing; stasis. Medical / aesthetic questions of dispensing poor-quality water in health care setting. Limit bacteria in ac | Pathogens, common opportunistic microorganisms flourish in biofilm. Dental / medical equipment, catheters, drainage tubes, pacemakers, artificial hearts, joints | More variation
during workday
than overnight
stasis.
Hemolytic
staph. & strep.
in lines from
sterile water: pt
derived | 8 of 89 DUWL met standards for potable water; overnight samples - mid range of other collection times - need further study of dynamics of bacterial production | SEM DUWL
lumens: cocci;
bacilli; spirilla.
TEM of line
sections - amebic
trophozoites;
cysts; nematode
worms | Flushing - transient reduction; may cause increase; 30 min after flushing - increased levels - biofilm remains in tact, generates more bacteria | | | Mayo, Brown, Am J
Dent, 1999, 12, 256-
260 | 1999 | Effect of in-line
bacteriological
filters on numbers
of heterotrophic
bacteria in water
emitted from non-
autoclavable
dental air-water
syringes | Comparative
study of in-line
filter
placement
with non-
autoclavible
AWS | Measure
effectiveness of
in-line filters to
reduce bacteria
counts | Prevent
opportunistic
infections, oral
infections, health
care worker
exposure to
contaminated
aerosols | Need to verify manufacturers' claims- filters effective whole day -with autoclavable AWS. Biofilm Gramnegative rods produce endotoxin - >> measure endotoxin levels in filtered & unfiltered DUW | Unfiltered AWS
water >
unacceptable;
in-line filter close
to AWS reduce
heterotrophic
bacteria by 97%
- but still
unacceptable | Conclude that filtered water is recontaminated during passage through tubing & valves in the non-autoclavable AWS | Filtration alone will
not provide water of
acceptable quality.
Autoclavable AWS
becoming available | | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | Study
Type | Objectives | Issues | Significant Findings | Significant
Findings | Significant Findings | Significant
Findings | Significant Findings | |---|------|---|--|---|--|---|--|---|---|--| | Karpay, Plamondon,
Mills, Dove, JADA,
1998, Feb, 129, 207-
211 | 1998 | Validation of
an in-office
DUW
Monitoring
Technique | Comparative study of three microbial testing methods | Determine sensitivity, specificity & accuracy of HPC Samplers compared to R2A agar & HPC agar used to monitor DU with separate water reservoirs & having weekly treatment with sodium hypochlorite 1:10 | Dental offices
lack microbiol
skills. Lack of
standard
evaluation
methods for
DUW -
problematic in
comparing
results | Monitor
compliance
routinely -
dependent on
practice size,
staff, previous
results,
eqt./technique
changes. | DUWL colonization is universal with municipal water or separate system. Remediation - conscientious compliance with interventions | Assure effectiveness of treatment protocols and verify compliance with manufacturer- recommendations with in-office monitoring devices | HPC samplers
(Millipore)
compare favorably
with R2A agar &
HPC agar -
accuracy rate
92.6%.
Considered user-
friendly,
economical | | | Shearer, JADA,
1996,127, 181-189 | | Biofilm and
the Dental
Office | Overview of
biofilm
formation,
ADA
statement | Suggestions for improving water quality in dental offices | Ref: Documented reports of waterborne disease outbreaks - pathogens: P. aeruginosa, E. coli, L species, Crypto- sporidium Speculation - seroprevrates for L antibodies in Dental personnel - may reflect continuous exposure | Concern: Numbers of dental pts with diminished resistance to overt &
opportunistic microbial pathogens Concern: Awareness of potential occupational hazards | Interim Recommenda- tions: Waterlines without handpieces - discharge water several min. at beginning of each day note - see Santiago, this recommendation does not improve DUW quality | High-speed handpieces - run minimum 20-30 seconds after use on each patient to flush patient material that may have entered turbine, airlines, waterlines. Use enclosed container to minim spray, splatter & aerosols | Follow instructions of manufacturer for maintenance of waterlines | Commercial options to improve water quality - consider with caution; consult with manufacturer | | Reference | YR | Title | Study
Type | Objectives | Issues | Significa
nt
Findings | Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|----|--|---|---|--|---|---|--|-------------------------|-------------------------| | | | | | | | | Use sterile saline
/water with surgical
procedures
cutting of bone | ADA is develop
evaluate
guidelines for eqt.
to control biofilm -
Assoc.'s
Acceptance
program | | | | Puttaiah, Wills et al.,
J Dent Res (IADR
Abstracts)75, 1996 | | A Multi-Group
Longitudinal
Study of
DUWL
Contamination | Longitudinal study of 5 groups of waterlines using an automated device simulating DUWL. Identification of control methods | Describe contamination (heterotrophic bacterial counts) in outflow water over 8 weekly measurements | Conclusion: Outflow water from groups using filter combinations showed minimal or no contamination All other groups showed contamination unacceptable for dental care over time. | Minimal to
no growth:
(0.00-0.39
log CFU/ml)
Group 2 -
municipal
water-filter
changed
daily | Unacceptable
growth: (1.18 -
4.12 log CFU/ml)
Group 1 - sterile
water; Group 4 -
municipal water
flushed wkly -
NaOCI; Group 5 -
Tap water only | | | | | | | | | | | Group 3 -
municipal
water, filter
changed
daily, weekly
bleach flush | | | | | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | Study
Type | Objectives | Issues | Significant Findings | Significant
Findings | Significant
Findings | Significant
Findings | Significant Findings | |--|----|--|--|---|---|---|---|---|--|--| | Plamondon, Mills et
al., J Dent Res (IADR
Abstracts)75, 1996 | | Effects of
Bleach on
Mature Biofilm
in DUWL | Case-
control
study of
DUWL | To determine if DUWLs in biofilm colonized units could be decontamination using a manufacturer-recommended protocol | Conclusion: Data suggest - may be possible to dramatically reduce planktonic bacteria in biofilm- colonized DU by treating lines q wk with 1:10 bleach solution & dry overnight | 12 DUs: initially municipal water, modified with separate reservoir systems to add sterile water & disinfectants. 3 groups: 1 control, 2 experimental | Baseline Range
5.6x105-1.06x106
cfu/ml Controls -
sterile water
Grp 1 - 5.25 NaOCI
1:110 Grp 2 -
dilute 1:100 | Treatments: q wk -
Heterotrophic
plate count prior to
tx, air purge, test
solution - 10 min in
line, then flush
with 500 ml sterile
distilled water, air-
purge, dry
overnight | Results: Controls - 1.21 log reduction in CFU/ML Results: Treated units - 1:10 NaOCI(4.23 log reduction) 0 - 80 CFU/ml 1:100 NaOCI- (3.02 log reduction) 30 - 6.1x102 CFU/ml | | | Williams, Johnston et al., JADA,1993, Oct, 124, 59-65 | | | operatories,
54 sites -
NW USA -
116 3-way
syringe
lines, 54 hi-
speed | representative of
that issuing from
instruments during
typical procedures. | Hi numbers of types of bacteria found - impart foul odors, bad taste & texture commonly associated with dental operatory water. Effects of flushing - ephemeral | 72% DUWL - "unfit for human consumption" (ref 500 cfu/ml- US Army) 28 DUWL samples = too few to count (TFC) 1 of 11 faucet - unfit 9 faucet samples TFC | Mean heterotrophic
cfu counts were:
49,700
(SD=156200); max
1,200,000 /ml 3-
way syringe;
72500 (SD
140,300) max
550,000 /ml hi-
speed handpiece | 12 scalars (mean
19,800 cfu/ml,
SD=37,300) | No trends -
types/models DU or
degree
contamination.,
geograph sites,
collection / shipping | In-situ view of
biofilm -
proliferation/relea
se of bacteria
sometimes in
clumps - 30 - 50
u thick, not
penetrating
plastic wall | | Reference | YR | Title | Study
Type | Objectives | Issues | Significan t Findings | Significant
Findings | Significant Findings | Significant
Findings | Significant
Findings | |--|----|---|---|--|---|---|---|--|-------------------------|-------------------------| | | | | | Conclusion: work to be done investigating any relationship of organisms in DUWL to medical complications after dental care. Organisms in DUWL must be considered along with concern re handpiece steriliz. & infection control practices in dental off | Ultraclean
water supply
alone negated
with biofilm in
lines
Pseodomonas
cepacia, resp.
path of cystic
fibrosis pts,
proliferates in
distilled water:
100,000cfu/mL
in hrs | Microorganism
s in mature
biofilm -
notoriously
resistant to
chemical
disinfection. | Sterilization of handpieces reduces risk of pt to pt transfer but sterile instrumentation become heavily contamination with bacteria (some ptderived) when connect to DUWL. | | | | | Meiller, DePaola
et al., 1999, Jan,
JADA, 130, 66-
72 | | DUWL: Biofilms,
Disinfection &
Recurrence | Series of
trials using
various
biocides:
Bleach (B);
Glutaraldeh
yde (G);
Isopropanol
15.3% (I) | To examine the effects of biocides on biofilm and the recurrence of microbial growth after treating DUWLs. | Concern: transmission of microbial pathogens to patients from biofilm in DUWL. Concern: biocide residual may be trapped in biofilm matrix presenting additional toxic risk to patients. | Agents reduce microorganism s in effluent water but do not destroy biofilm matrix even with periodic treatments. Recoloniz. occurs rapidly. | No evidence of resistance development during the study. Concern that lonterm treatments may yield resistant strains or mutations. | Effluent with B or I - to pretreatment level by day six & 15. G recurrence by day three. | | | IL 10-2000-011 October 10, 2000 | Reference | YR | Title | Study
Type | Objectives | Issues | Significant
Findings | Significant
Findings | Significant
Findings | Significant
Findings |
Significant
Findings | |--|----|--|--|--|--|--|---|---|---|---| | | | | | Conclusion: need disinfectant * that reduces viable bacteria below culturable levels, * disrupts/remove s biofilm and * poses no toxicity risks to pts | Be wary of products not including results of independent tests related to antimicrobial efficacy, biofillm disruption, toxicity. | | | | | | | Miller, RDH,
1996, 16 (5) 36-
38 | | Elimination of contaminants in waterlines may be guesswork, but several options help | Procedures to eliminate DUWL contamination | Methods under investigation to protect patients. Suggest PPE and respiratory protection for workers | CDC recommendati ons - sterile water/saline for surgical procedures, flush handpieces 20-30 sec with air & water between patients. Caution - flushing does not eliminate biofilm | Alternative water source - require cleaning & flushing with disinfectant rinsing. Disposable plastic syringes prefilled with approp. tx water - used for hand irrigation | Concern with corrosion of DUWL fittings, handpieces, hazard to pt. if lines not rinsed. | Replacing DUWL does not prevent biofilm. Filters may remove bacteria. System is available for insertion into DUWL before water enters handpiece or 3-way syringe. | Filters do not affect
bio film. Small
particles not
retained | Rubber dam
reduces patient
contact with
DUW. | | Reference | YR | Title | Study
Type | Objective
s | Issues | | Significant
Findings | Significant
Findings | Significant
Findings | Significant Findings | |--|----|---|---|---|---|--|---|---|---|---| | Murdoch-Kinch,
Andrews et al.,
1997, Sept, JADA,
128, 1235-1243 | | Comparison of
DW Quality
Management
procedures | Longitudinal
study - 4 DU
in dental
school clinic -
using several
DW
management
procedures | Investigate whether DUWL contamination can be controlled with available technology and adherence to protocols | Evaluate 4 DUWL contamination controls identified by ADA: Independent water reservoir; chemical tx regimens; daily draining & purging; point-of- use-filters. | Importance of
Maintenance,
Separate Water
Supply; Follow
manufac's
protocol | Microbial
population on
DUWL reduced
with 0.2um filters
at point of use | SEM: DUWL of new unit (4) with no filters, adherence to recommendations - changing supplied bottled water, flushing and purging lines, disinfecting on schedule can result in minimal biofilm for at least 2 mos. | Plasticizers in new
lines may exert
temporary
antimicrobial effect | Maintenance protocols for SWS - time, care, proper handling of corrosive chemicals, training, consistent compliance with protocol | | | | *SWS-separate
water supply;
*MWS-
municipal
water | U1 old unit,
*SWS | 25 day
Scanning
Electron
Microscop
y (SEM)
Assay:
Biofilm,
planktonic
populations | 58 day SEM
Assay
Biofilm, various
microbial forms | | | | Units had pinch
valves; no metal
valves; no corrosion
problems | Must manage water source | | | | | U2 new
unit, *SWS,
filter at
handpiece, &
AWS | Trace
adherent
organisms | No biofilm,
occasional
microorganisms
on inner walls | | | | Control unit -
substantial biofilm
remained - more
aggressive
antimicrobial
treatment needed to
clear water lines of
existing biofilm - or
new waterlines to
improve
predictability and
efficacy of water
management
protocols | Filters may be problematic: Cost; inventory maintenance; following replacement protocol; may use tap water in error | | Reference | YR | Title | Study
Type | Objectives | Issues | Significant
Findings | Significan
t Findings | Significant
Findings | Significant
Findings | Significant
Findings | |---|------|---|---|---|--|---|---|---|---|-------------------------| | | | | U3 new
unit,
*MWS,
filter at
handpiece
no at AWS | Planktonic, no
adherent
accumulations | Filter limited
biofilm growth at
handpiece. AWS
heavy biofilm | | | | | | | | | | U4 new
unit, *SWS,
no filters | Trace adherent organisms, no biofilm | No biofilm | | | | | | | Dayoub, Rusilko,
Gross, J Periodon,
1978, 49, 261-265 | 1978 | A Method of
Decontamination of
Ultrasonic Scalers
& High Speed
Handpieces | | Eliminate
microflora in
dental
handpiece water
spray to prevent
wound
contamination | | 0.2 um pore
size filter
unacceptably
restricted flow | Need
systems with
easily
changed
disposable
filters using
tubing
resistant to
deterioration
by steam or
chemical
sterilization | Lacks durability for daily use. | | | | Blake, Br Den J,
1963, Nov, 413-415 | | The Incidence and
Control of Bacterial
Infection in Dental
Spray Reservoirs | Bacterial
counts on
dental
instruments,
control
measures | Bacterial control
in spray fluid,
tubes & spray
heads; prevent
blocking spray
jets, pleasant
flavor, effective /
not detrimental
to tissues or
react with metal
parts | Organisms of
concern:
Klebsiella
aerogenes,
Bacillus subtilis,
Pseudomonas
pyocyanea | Control
methods:
1:5,000
chlorhexidine
in tap water -
no growth
after 2 days
use | Control methods: 1:10000 chlorhexidine no growth in 7 days (topped off without emptying) 3 months - no growth in any bottles or sprays. | Conclusion: 1:5000 to
1:10000 chlorhexidine
in tap water controlled
bacterial growth.
Flavoring added to
enhance taste | Chlorhexidine Gluconate Solution B.P. in 20% solution - a convenient supply to prepare dilute solution - uses distilled water to avoid precipitation with chlorine. | | | Marais, Brozel, Brit | 1999 | Electro-chemically | Comparativ | Investigate use | Concern: | ECA treatment | ECA is highly | Similar technology is | | |----------------------|------|--------------------|------------|-----------------|--------------------|---------------|-----------------|------------------------|--| | Dent J, 1999, 187, | | activated (ECA) | e study of | of electro- | latrogenic | results in | microbicidal; | in place in developing | | | 154-158 | | water in DUWL | ECA and | chemically | transmission of | colony counts | water / saline | countries for drinking | | | 104 100 | | | distilled | activated (ECA) | pathogens: risk of | of <1CFU/mL. | fed into a | water purification. | | | | | | water in | water to treat | disease / death; | | special unit - | | | | | | | microbial | biofilm in DUWL |
litigation & | | activates the | | | | | | | control of | | adverse publicity | | water | | | | | | | DUWL | | | | meta-stable | | | | | | | | | | | state of water | | | | | | | | | | | - free radicals | | | | | | | | | | | produced | | | | | | | | | | | | | |